Проецирование как метод графического отображения формы предмета |
Проецирование — это процесс получения проекций предмета на какой-либо поверхности (плоской, цилиндрической, сферической, конической) с помощью проецирующих лучей. Проецирование может осуществляться различными методами. Методом проецирования называется способ получения изображений с помощью определенной, присущей только ему совокупности средств проецирования (центра проецирования, направления проецирования, проецирующих лучей, плоскостей (поверхностей) проекций), которые определяют результат — соответствующие проекционные изображения и их свойства. Для того чтобы получить любое изображение предмета на плоскости, необходимо расположить его перед плоскостью проекций и из центра проецирования провести воображаемые проецирующие лучи, пронизывающие каждую точку поверхности предмета. Пересечение этих лучей с плоскостью проекций дает множество точек, совокупность которых создает изображение предмета, называемое его проекцией. Это общее определение рассмотрим на примере проецирования точки, прямой, треугольника и треугольной призмы на плоскость проекций H. Проецирование точки (рис. 52, а). Возьмем в пространстве произвольную точку А и расположим ее над плоскостью проекций H. Проведем через точку А проецирующий луч так, чтобы он пересек плоскость H в некоторой точке а, которая будет являться проекцией точки А. (Здесь и в дальнейшем будем обозначать точки, взятые на предмете, прописными буквами чертежного шрифта, а их проекции — строчными.) Как видим, методом проецирования можно получить проекцию нульмерного объекта— точки. Проецирование прямой (рис. 52, б). Представим себе прямую как совокупность точек. Используя метод проецирования, проведем множество параллельных проецирующих лучей через точки, из которых состоит прямая, до пересечения их с плоскостью проекций. Полученные проекции точек составят проекцию заданной прямой — одномерного объекта. Проецирование треугольника (рис. 52, в). Расположим треугольник ABC перед плоскостью H. Приняв вершины треугольника за отдельные точки А, В, С, спроецируем каждую из них на плоскость проекций. Получим проекции вершин треугольника — a, b, с. Последовательно соединив проекции вершин (а и b; b и с; с и а), получим проекции сторон треугольника (ab, bc, ca). Часть плоскости, ограниченная изображением сторон треугольника abc, будет являться проекцией треугольника ABC на плоскости H Следовательно, методом проецирования можно получить проекцию плоской фигуры — двухмерного объекта. Проецирование призмы (рис. 52, г). Для примера возьмем наклонную треугольную призму и спроецируем ее на плоскость проекций H. В результате проецирования призмы на плоскость H получают изображения (проекции) ее оснований — треугольников — abc и a1b1c1 и боковых граней — прямоугольников abb1a1 и bcc1b1. Так в результате проецирования на плоскости H получают проекцию треугольной призмы. Следовательно, с помощью метода проецирования можно отобразить любой трехмерный объект. Рис. 52. Проецирование нуль-, одно-, двух- и трехмерных объектов: а — точка;
Таким образом, методом проецирования можно отобразить на плоскости любой объект (нуль-, одно-, двух- и трехмерный). В этом отношении метод проецирования является универсальным. Сущность проецирования легче понять, если вспомнить получение изображения в кинотеатре: световой поток лампы кинопроектора проходит через пленку и отбрасывает изображение на полотно. При этом изображение на киноэкране будет в несколько раз больше изображения на кинопленке. Существует центральное (или перспективное) и параллельное проецирование. Параллельное проецирование бывает прямоугольным (ортогональным) или косоугольным (табл. 5). 5. Методы проецирования
Центральное проецирование (перспектива) характеризуется тем, что проецирующие лучи исходят из одной точки (S), называемой центром проецирования. Полученное изображение называется центральной проекцией. Перспектива передает внешнюю форму предмета так, как воспринимает его наше зрение. При центральном проецировании, если предмет находится между центром проецирования и плоскостью проекций, размеры проекции будут больше оригинала; если предмет расположен за плоскостью проекций, то размеры проекции станут меньше действительных размеров изображаемого предмета. Параллельное проецирование характеризуется тем, что проецирующие лучи параллельны между собой. В этом случае предполагается, что центр проецирования (S) удален в бесконечность. Изображения, полученные в результате параллельного проецирования, называются параллельными проекциями. Если проецирующие лучи параллельны между собой и падают на плоскость проекций под прямым углом, то проецирование называется прямоугольным (ортогональным), а полученные проекции — прямоугольными (ортогональными). Если проецирующие лучи параллельны между собой, но падают на плоскость Проекций под углом, отличным от прямого, то проецирование называется косоугольным, а полученная проекция — косоугольной. При проецировании объект располагают перед плоскостью проекций таким образом, чтобы на ней получилось изображение, несущее наибольшую информацию о форме. |